fbpx

Boiler tubes

Boiler tubes are used in heat exchange appliances in which the energy is transferred from one medium to the other.

Please send your inquiry by   sales@sunnysteel.com

Description

Boiler tubes are used in heat exchange appliances in which the energy is transferred from one medium to the other.

 

astm a179 seamless tube mesure out diameterHow to choose good quality boiler tubes?

While choosing boiler tubes, look for the following to pick out the right and good quality tubes:

  1. Look at the cross-section of the tube. A good quality seamless tube will have a smooth cross-section and will be devoid of bumps and irregularities.
  2. Check the density of the pipe to understand the percentage of impurities in the pipe. If the pipe shows low density, steer clear!
  3. Check the surface of the boiler tube. A good quality boiler tube will have a smooth surface. If you find the surface to be rough and uneven, you can be sure that the quality is not up to the mark.

Boiler Tube Standard Specifications

Sunny Steel has an extensive range of boiler and stay tubes available to meet your boiler tube requirements no matter how demanding.

GB

Chinese National standards

  • GB 3087: Seamless steel tubes for low and medium pressure boiler
  • GB 5310: Seamless steel tube for high pressure boiler
  • GB 13296: Seamless steel tubes for boilers and heat exchangers
  • GB 6479: Seamless steel tubes for high-pressure chemical fertilizer equipment
  • GB 9948: Seamless steel tubes for petroleum cracking
ASME

American society of mechanical engineers

  • ASME SA-106: Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service
  • ASME SA-192M: Seamless Carbon Steel Boiler Tubes for High Pressure
  • ASME SA-209M: Seamless carbon-Molybdenum Alloy-Steel Boiler and Superheater Tubes
  • ASME SA-210M: Seamless Medium-carbon Steel Boiler and Superheater Tubes
  • ASME SA-213M: Seamless ferritic and austenitic alloy steel boiler, superheater and heat exchanger tubes
  • ASME SA178: Electric-Resistance-Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater
ASTM

Chinese National standards

  • ASTM A213: Seamless ferritic and austenitic alloy steel boiler, superheater and heat exchanger tubes
  • SA213-T2: ASME SA213 T2 has allowable stresses listed up to 1000F in the ASME Boiler Code.
  • SA213-T9
  • SA213-T12: Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, Heat-Exchanger Tubes.
  • SA213-T11: The tubes are used in heat exchangers, super heaters and in boilers.
  • SA213-T22: ASM T22 Boiler Tube is a high temperature tolerance tube that is used in acidic and corrosive environments such as the hydrochloric processing and in aluminum chloride catalyst involving applications.
  • ASTM A 106M: Seamless Carbon Steel Pipe for High-Temperature Service
  • ASTM A192M: Seamless Carbon Steel Boiler Tubes for High Pressure
  • ASTM A210M: Seamless Medium-carbon Steel Boiler and Superheater Tubes
  • ASTM A 335M: Seamless ferritic alloy-steel pipe for high-temperature service
EN

Deutsche industrie normen

  • EN 10216-2 : Seamless steel tubes for pressure purposes
DIN

Deutsche industrie normen

  • DIN 17175:Seamless Tubes of Heat-resistant Steels – Technical Conditions of Delivery
JIS

Japanese industrial standards

  • JIS G3461: Carbon steel boiler and heat exchanger tubes
  • JIS G3462: Alloy steel boiler and heat exchanger tubes
  • JIS G3463: Stainless Steel for Boiler and Heat Exchanger Tubes
STAINLESS STEELS

– Austenitic stainless steels

  • SA213-T304:– The SA 213 Tp 304 Material consists of 18% chromium and carbon, manganese, phosphorus, sulfur, silicon and nickel in the composition.SA213 TP304 is a range of minimum wall thickness pipe series. We supply the SA 213 TP 304 Pipes in different types, shapes and sizes. The SA 213 Tp 304 Material consists of 18% chromium and carbon, manganese, phosphorus, sulfur, silicon and nickel in the composition. There is also the molybdenum, nitrogen, niobium and titanium addition in trace quantities. The SA 213 Tp 304 Density is lower than the ordinary 304 material. It is 7.8 grams per cubic centimeter. We offer ASTM A213 TP 304 for high temperature services. Our 304 Stainless Steel Tube components are of less absolute roughness which means they could be used in high precision equipment and applications.Austenitic stainless steels are presented in the ASME Boiler and Pressure Vessel Code with two sets of allowable stresses. The reason for this is their relatively low yield strength. The higher allowable stress values were determined at temperatures where the usage would be restricted by the short-time tensile properties.The higher stresses exceed 62-1/2%, but do not exceed 90% of the yield strength. At these stresses, small amounts of plastic deformation can be expected. These higher stress values are usually used for super-heater and reheater tubing.The Boiler Code lists maximum allowable stresses for varying temperatures depending on the individual austenitic stainless grade.Variations of this 18 chromium, 8 nickel grade include 304L, 304LN, 304H and 304N. Each of these offers excellent corrosion and oxidation resistance along with high strength.
    High strengths are maintained in the low carbon grades by controlling the nitrogen content.T304 has higher carbon and a minimum solution annealing temperature to assure good long-time elevated temperature strengths. T304 grades are limited to 1650F under oxidizing conditions. Section I of the ASME Boiler Code lists allowable stresses up to 1500F.
  • SA213-T316: – SA213 TP316 Tube is a material standard for heat exchanger tubes that are made from 316 austenitic stainless steel.The chromium nickel alloy also has molybdenum in its composition which makes it more corrosion resistant and heat resistant than the 304 material. ASME SA213 TP316 is the second most used pipe material in the world next to the 304 material. ASTM A213 TP316 Tube is an austenitic stainless steel but the 213 standard covers both the austenitic and ferritic steels.Sunny Steel is a supplier of ASTM A213 Grade TP316 products in different standards and sizes. Our 316 Stainless Steel Tube can come with different finishing such as the 316 Stainless Steel Tubing Polished or electropolished. We also provide the pipes in different shapes such the round, rectangular or Stainless Steel 316 Square Tube. The square and 316 Stainless Steel Rectangular Tube is usually used in high pressure applications to withstand the pressure stress at change of directions. The Stainless Steel 316 Seamless Tube is more accurate in dimensions and therefore it is used in high precision applications. Our 316 Stainless Steel Exhaust Tubing is of high quality and can withstand high temperatures; it is used in exhausts, heat exchangers and super heaters. The 316 Stainless Steel Heavy Wall Tubing is used in high pressure applications such as hydraulic systems. Our SS 316 Welded Tube is easy to weld upon. We supply 316 Stainless Steel Welded Tube for affordable prices in different sizes and schedules. Please contact us for further details and pricing.
  • SA213-TP321 & 347– SA213 TP321 is a specification of heat exchanger tubes that are made from the 321 austenitic stainless steel.SA213 TP321 is a specification of heat exchanger tubes that are made from the 321 austenitic stainless steel. The SA 213 specifies pipe products for heat exchangers in different material grades, both the ferritic and austenitic steels.Sunny Steel is a supplier of all kinds of stainless steel pipes. The SA213 Tp321 Material is special in that the composition includes titanium which reduces the density of the ASME SA213 Tp321 and therefore making it lightweight.T321 and 347 are variations of T304 and have comparable minimum tensile properties. These two grades are stabilized with additions of titanium and columbian respectively, along with proper heat treatment.To insure good long-time strength at elevated temperatures, T321H and 347H-like 304H-were developed with higher carbon contents and specified minimum solution annealing temperatures.Of all the stainless steels, T309 (25 chromium, 13 nickel) and T310 (25 chromium, 20 nickel) offer the maximum resistance to oxidation and corrosion. They also offer good high-temperature properties. Since these steels contain ferrite, however, they are more susceptible to sigma phase.

Boiler tube ends

The ends are vertical to the longitudinal axis and are without burrs.

Deburring applies to

Tube OD 26.7 – 114.3 mm
Tube WT 3.2 – 12.5 mm
Tube lengths 4 – 13 meters
Deburring angle, a 30°+ 5 and 37°± 2.5
Dimension, c 1.6 ± 0.8 mm

Quality Assurance

We have capability and capacity to ensure boiler tube in superior condition, with advanced inspection and testing procedures, standard tests include dimensional examination, visual checking, chemical composition, mechanical properties as well as non destructive test 100% eddy current test.

Fire Tube Boiler

Fire-tube boiler is a type of boiler in which hot gas passes from the fire through one or more pipes that pass through a sealed water container. The heat of the gas is transferred through the wall of the tube through heat conduction, heating the water and eventually generating steam. Fire tube boilers are the third of the four historical types of boilers: low-pressure tank or “haystack” boilers, flue boilers with one or two large flues, fire tube boilers and high-pressure boilers with many small tubes

Water Tube Boiler

Water tube boiler is a type of boiler in which water circulates in tubes heated externally by the fire. The fuel is burned in the furnace to produce hot gas, which heats the water in the steam generation tube. In smaller boilers, the additional power generation tubes are separated in the furnace, while larger utility boilers rely on water injection tubes that make up the furnace wall to generate steam. High-pressure water tube boiler: The hot water then rises into the steam drum. Here, saturated steam is drawn away from the top of the drum.


Packing

How to pack boiler tubes

Main products and applications

Boiler Tubes are metal tubes located inside of boilers that heat water in order to produce steam. There are two major types of tube boilers: water-tube boilers and fire-tube boilers. In water-tube boilers, water circulates inside the tubes and is heated externally by hot gases generated by the furnace. Boiler tube is installed inside boiler to heat water in order to generate steam, boiler is a closed pressure vessel designed in varieties of types, water tube boiler and fire tube boiler are main types.

  • Welded boiler tubes can be supplied from stock to suit your needs
  • Hot finished boiler tubes can be supplied from new production
  • We can arrange cutting, deburring and testing
  • Boiler tubes can be swaged/bulged to suit your requirements
  • Shipping can be arranged worldwide
  • Stock lengths ranging from 10200-12250mm
Steel typesGB(China)ASME(USA)DIN/EN(Euro)Application
Carbon steel10
20
20G
20MnG
25MnG
SA-106B
SA-192
SA-210A1
SA106C
SA-210C
PH265GH
P195GH
P235GH
St35.8
St45.8
Economizer tube
Water wall tube
Mo steel15MoG
20MoG
SA-209 T1
SA-209 T1a
SA-209 T1b
15Mo3
16Mo3
Water wall tube
Superheater tube
Reheater tube
Cr-Mo Steel12CrMoG
12Cr2MoG
12Cr1MoVG
15CrMoG
10Cr9MoVNb
SA-213 T11 SA-213 T22
SA-213 T24 SA-213 T91
A335 P1 A335 P2
A335 P5 A335P9
A335 P11
12Cr1MoV
14MoV63
10CrMo910
X10CrMoVNb91
10CrMo5-5, 13CrMo4-5
Superheater tube
Reheater tube
Cr-Mo-W steel12Cr2MoWVTiBSA-213 T23 SA-214 T911
SA-213 T92 SA-213 T122
A335 P23 A335 P911
A335 P92 A335 P122
---Superheater tube
Reheater tube
Austentic Stainless steel---AP304 TP304H
TP321 TP321H
TP347 TP347H
TP316 TP316H
S30432 TP310HCbN
---Superheater tube
Reheater tube

Process flowchart

Boiler tube process flow chart

FAQ

How to get rid of surface stains of cracking tube

How to get rid of surface stains of cracking tube follow the steps below:

The first step is to clean, we must first petroleum cracking tube surface oil, dirt, grease, and some other substances removed. The second step is naturally acid, generally speaking, there are two pickling treatment, a chemical treatment, another treatment method is electrolysis, which can be handled in two ways petroleum cracking tube surface cleaning clean, but chemical pickling is a pipeline anti-corrosion measures.

The third step is necessary to use the tool to the surface of the oil cracking pipe polished, although the effect may not be very good polish, but this procedure is also indispensable. The final step is to make the surface of petroleum cracking tube jet, one can remove some of the dirt, the second is to make the roughness of petroleum cracking tube more evenly.

For petroleum cracking tube defects formed on the surface there are many, but certainly there are a lot of different reasons, the specific form of the crack is different, often found defective for its appearance on petroleum cracking tube we can see, the main reason for its main form by the following points. In fact, for the production process, the emergence of various drying phenomena of its raw materials for steelmaking summer rainy season or when it will produce up to steel gas content’s sake.

In the process, the ingot when heated due to heating of the air bubbles are burned through, it will have more cracks after the rolling, which will meet the petroleum cracking tube relatively thin, dense and sizes, its length ranging from cracks, these things collectively referred to as hairline, this is a defect. So the cause of the surface oil cracking tube defects are many, so we have to remedy. After oil cracking pipe handling, appearance becomes smoother, more beautiful. Although after the rust will not affect the use again, but if we do the work in advance, so do not bother it. We buy petroleum cracking tube among the first to note that it is not a strong corrosion resistance, have a longer life does not have to select a high-quality petroleum cracking pipe products that can reduce our future work a lot of trouble.

Characteristics of boiler pipe

Small diameter high-pressure boiler tube surface defects that affect the quality, mainly due to waste generation.

Boiler pipes often in high temperature and high pressure work, pipe smoke and water at high temperature steam oxidation and corrosion effects will occur, thus requiring durable steel with high strength, high oxidation resistance, and good organizational stability, high pressure boiler tube in addition to chemical composition and mechanical properties, hydrostatic testing done by the root, to be flaring, flattening test. Steel to heat treatment delivery. In addition, the finished steel microstructure, grain size, there are certain requirements decarburization.

High-pressure boiler tubes are seamless steel pipe categories. Seamless same manufacturing method, but used in the manufacture of steel pipe, there are strict requirements. Often in high-pressure boiler tubes at high temperature and pressure conditions of use, the tube under the effect of high temperature gas and water vapor, oxidation and corrosion will occur. Require durable steel with high strength, high resistance to oxidation corrosion, and have good organizational stability.

High-pressure boiler tube is mainly used to manufacture high-pressure and high pressure boiler superheater tubes, reheater tubes, windpipe, the main steam pipe. High-pressure boiler tubes for low and medium pressure boiler (working pressure is generally not more than 5.88Mpa, working temperature below 450 ℃) of heating surface tubes; used for high-pressure boilers (above 9.8Mpa working pressure in general, the working temperature of 450 ℃ ~ 650 ℃ between) the heating surface tubes, economizer, superheater, reheater, petrochemical industrial pipe.

Hardness testing methods of high-pressure boiler tubes

High pressure boiler tube hardness testing should take into account its mechanical properties, which is related to stainless steel as raw material for the deformation, such as punching, cutting processing performance and quality.

Therefore, all of the high-pressure boiler tubes need to conduct mechanical tests. Mechanical performance testing method is mainly divided into two kinds, one kind is tensile test, the other kind is usually hardness test.

Tensile test is the high pressure boiler tube sample, high pressure boiler tube tend to sample to the fracture on tensile testing machine, mechanical properties and determination of one or more, usually only determination of tensile strength, yield strength, break elongation, and reduction of area. Tensile test is the most basic mechanical properties of metallic materials testing methods, almost all of the metal material, as long as the requirements of the mechanical properties of the high pressure boiler tube, the provisions of the tensile test. Especially those appearance and high pressure boiler tube is not good for the material of hardness test, tensile test became the only means of mechanical properties testing.

Steam boilers

A steam boiler is a device used to create steam by applying heat energy to water.

High Frequency Resistance Welding

A continuous helical fin is attached to the base tube by high frequency electric resistance welding in order to give an efficient and thermally reliable bond. Fins can be either solid or serrated (segmented). The weld produced in this process is a true forge, blacksmith weld. This type of weld is comprised of a fusion between two portions of parent metal without the introduction of a filler material. The weld is simply produced by heating the interfaces to be joined to a plastic state and applying pressure.

Used in boilers, furnaces and fired heaters for efficient heat recovery.

High-pressure boiler tube heat defect

High-pressure boiler tubes are frequently occurs fault because of high temperatures, affecting the entire heating system, mainly due to an internal boiler for heat treatment is not perfect, a lot of heat can not be effectively converted and timely treatment.

Hardness testing methods of high-pressure boiler tubes

High pressure boiler tube hardness testing should take into account its mechanical properties, which is related to stainless steel as raw material for the deformation, such as punching, cutting processing performance and quality.

Therefore, all of the high-pressure boiler tubes need to conduct mechanical tests. Mechanical performance testing method is mainly divided into two kinds, one kind is tensile test, the other kind is usually hardness test.

Heat treatment methods applied in the boiler pipes

Heat treatment is a method of changing the physical properties of high pressure boiler pipe by heating and cooling. Heat treatment can improve the microstructure of high pressure boiler pipe, so as to meet the required physical requirements. Toughness, hardness and wear resistance are obtained by heat treatment. In order to obtain these characteristics, it is necessary to adopt quenching, annealing, tempering and surface hardening.

a. Quenching

Hardening, also called quenching, is that high pressure boiler pipe is heated evenly to the appropriate temperature, then quickly immerse in water or oil for rapid cooling, and cooling in the air or in the freezing zone. So that the high pressure boiler pipe can obtain the required hardness.

b. Tempering

High pressure boiler pipe will become brittle after hardening. And the stress caused by quenching can make the high pressure boiler pipe tapped and broken. The tempering method can be used to eliminate brittleness. Although the hardness of high pressure boiler pipe is lighter reduced, its the toughness can be increased to reduce the brittleness.

c. Annealing

Annealing is the method to eliminate the internal stress of high pressure boiler pipe. The annealing method is that the steel parts need to be heated to the critical temperature, then put in dry ash, lime, asbestos or closed in the furnace, then let it cooling slowly.

ASTM standards for Heat-exchanger and condenser tubes

Abbr.CorrespondingApplication
A179ASTM A179 / A179MStandard Specification for Seamless Cold-Drawn Low-Carbon Steel Heat-Exchanger and Condenser Tubes
A213ASTM A213/A213MSpecification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes
A214ASTM A214 / A214MSpecification for Electric-Resistance-Welded Carbon Steel Heat-Exchanger and Condenser Tubes
A249ASTM A249 / A249MSpecification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes
A498ASTM A498 / A498MSpecification for Seamless and Welded Carbon, Ferritic, and Austenitic Alloy Steel Heat-Exchanger Tubes with Integral Fins
A851ASTM A851 / ASME SA851Specification for High-Frequency Induction Welded, Unannealed, Austenitic Steel Condenser Tubes

How are boiler tubes made?

Both medium-pressure and high-pressure boiler tubes undergo the same initial process of manufacturing, which includes fine drawing, surface bright, hot rolling, cold drawn and heat expansion. However, the following steps are undertaken to make high-pressure pipes stronger and more resistant.

Heat treatment includes heating and cooling of the high-pressure boiler pipes which increases toughness, hardness and wear resistance. The different steps that come under heat treatment include quenching, tempering and annealing.

Quenching is done to increase the hardness of the high-pressure boiler tube. The pipe is heated evenly to an appropriate temperature and then quickly immersed into water or oil for instant cooling. This is followed by cooling in air or in the freezing zone.

Tempering is used to remove brittleness from the pipe. Quenching can cause the pipe to become tapped or broken.

Annealing can remove the internal stress in the pipe. In this process, the seamless tube is heated to the critical temperature and then left for slow cooling in ash or lime.

Rust removal of the boiler tube

There are several methods for removing rust from the boiler tube, the simplest being cleaning using a solvent and emulsion. However, this can remove only dust, oil, etc. but will not rid the pipe completely off organic remnants.

The second method is rust removal using manual or power tools. Tool cleaning can get rid of oxide coatings, welding slag and rust.

The most common method is through chemical and electrolytic methods, also known as acid cleaning.

Spray rust removal is the most ideal method for cleaning of the boiler tube as it can remove dirt, oxide and rust to a greater level. Furthermore, it can increase the roughness of the pipe.

How to choose good quality boiler tubes?

While choosing boiler tubes, look for the following to pick out the right and good quality tubes:

1. Look at the cross-section of the tube. A good quality seamless tube will have a smooth cross-section and will be devoid of bumps and irregularities.

2. Check the density of the pipe to understand the percentage of impurities in the pipe. If the pipe shows low density, steer clear!

3. Make sure you check the trademark. Reputed manufacturers always put their trademark on their seamless tubes.

4. Check the surface of the boiler tube. A good quality boiler tube will have a smooth surface. If you find the surface to be rough and uneven, you can be sure that the quality is not up to the mark.

Standard

The production of our seamless pipes is tightly regulated and all of the pipes we stock have been fully tested to international standards to ensure we only supply the highest quality products.

ASTM / ASME

American Society for Testing and Materials(ASTM), American Society of Mechanical Engineers (ASME)
Product nameExecutive standardDimension (mm)Steel code/ Steel grade
Black and Hot-dipped Zinc-coated Steel Pipes SeamlessASTM A530.3-1200 x 1.0-150GR.A, GR.B, GR.C
Seamless Carbon Steel for High Temperature ServiceASTM A10610.3-1200 x 1.0-150GR.B, GR.C
Seamless Cold-drawn Low-Carbon Steel Heat-Exchanger and Condenser TubesASTM A17910.3-426 x 1.0-36Low Carbon Steel
Seamless Carbon Steel Boiler Tubes for High PressureASTM A19210.3-426 x 1.0-36Low Carbon Steel
Seamless Cold-drawn Intermediate Alloy Steel Heat-exchanger and Condenser TubesASTM A19910.3-426 x 1.0-36T5, T22
Seamless Medium-carbon Steel Boiler and Superheater TubesASTM A21010.3-426 x 1.0-36A1, C
Seamless Ferritic and Austenitic Alloy Steel Boiler, Superheater and Heat-exchanger TubesASTM A21310.3-426 x 1.0-36T5, T5b, T9 , T11, T22 ,T91
Seamless Carbon and Alloy Steel for Mechanical TubingASTM A3331/4"-42" x SCH20-XXSGrade1 Gr. 3,Gr..6, Gr.8 , Gr. 9
Seamless Cold-drawn Carbon Steel Feedwater Heater TubesASTM A55610.3-426 x 1.0-36A2, B2
Round and shaped steel cold formed welded and seamless carbon steel structural pipe.ASTM A500OD :10.3-820 x 0.8- 75Grade A, B, C, D
Carbon and alloy steel mechanical tubing, either hot-finished or cold-finishedASTM A51910.3-426 x 1.0-361020, 1025, 4130, 4140
For seamless ferritic alloy-steel pipe for high-temperature serviceASTM A3351/4"-42" x SCH20-XXSA/SA 335 P1, P2, P11, P12, P15, P22, P91, P92, P122

Process

Cold drawn seamless steel tube deformed process

Cold Drawn Seamless Mechanical Tubing (CDS) is a cold drawn 1018/1026 steel tube which offers uniform tolerances, enhanced machinability and increased strength and tolerances compared to hot-rolled products. Cold drawn seamless steel tubes process Cold drawn steel tube is with hot-rolled steel coil as raw material, and tandem cold rolling pickled to remove oxide scale, its finished rolling hard roll, rolling hard volumes due to the continuous cold deformation caused by cold hardening strength, hardness increased indicators declined tough plastic, stamping performance will deteriorate, which can only be used for simple deformation of the parts. Rolling hard roll can be used as the raw material of the hot-dip galvanizing plant, hot dip galvanizing line set annealing line. Rolling hard roll weight is generally 6 to 13.5 tons, the coil diameter of 610mm.


Hot rolled seamless steel pipe deformed process

Hot-rolled seamless steel pipe production base deformation process can be summarized as three stages: perforation, extension and finishing. Hot rolled seamless steel pipe deformed process The main purpose of the perforation process is to become a solid round billet piercing hollow shell. Capillary in the specifications, accuracy and surface quality can not meet the requirements of the finished product, further improvements are needed to deform the metal through. The main purpose of the stretching machine is further reduced sectional view (main compression wall) for a larger axial extension, so that the capillary improved dimensional accuracy, surface quality and organizational performance. After stretching machine rolled steel pipe shortage collectively need further molding mill in order to achieve the requirements of the finished pipe. Rolled steel due to pass in the method widely used in the production of seamless steel tubes. So far, due to the method pass rolling steel can be divided into two categories: core pension without rolling rolling (hollow body rolling), and with the mandrel. Sizing machines, reducing mill and stretch reducing mill belonging to the hole without mandrel type continuous rolling mills are generally coffin. Its main purpose is to reduce the diameter of the deformation process or sizing get finished steel, the wall thickness of process control, can make thinning, thickening or nearly unchanged. All the traditional hole-type rolling machine with mandrel belong to extend machine. The main purpose is to reduce the deformation process perforated capillary wall thickness and outer diameter roll passes in the deformation zone and the mandrel posed, for a larger axial extension. At the same time a certain improvement in the organization, performance, accuracy, surface quality.


Cut to LengthASTM A210 seamless medium carbon steel boiler and superheater tubes

Before cutting pipe and tubing No matter the material, measure the diameter of the pipe or tube to be cut to ensure that you use the right-size tube cutter for the job. When determining how to make a straight cut, use a tape measure and a pencil or other writing instrument to mark on the surface where you want to cut. If possible, mark around the circumference of a pipe, especially when cutting with a handsaw. Ensure that a cut is as straight as possible by securing the pipe with a vise, clamp, miter box or even duct tape to keep the length from shifting out of place while cutting. After cutting pipe and tubing

  • Unless a cut is perfectly clean, you should expect to remove burrs from around the edge, especially after sawing.
  • Use a deburring tool to clean the edge after tube cutting.
  • You may opt to use a metal file on the cut of a metal pipe.

Inspection

Size inspection

Geometrical inspection of steel pipes The outer diameter, wall thickness, bending and length of the steel pipe can be inspected on the inspection table with an outer caliper, a micrometer and a bending ruler, and a length tape measure.

Tolerances of pipes you should notice

Take seamless steel pipe as an example, there are some tolerances that affect quality. Noting this, and you will get a better pipe.

Weight tolerance
For pipe NPS 12 (DN300, 323.8mm) and under, the weight shall vary within -3.5% / +10%.

For pipe over NPS 12 (DN300, 323.8mm), the weight shall vary within -5% / +10%.

Pipe of NPS 4 (DN100, 114.3mm) and smaller may be weighed in convenient lots; pipe in sizes larger than NPS 4 shall be weighed separately.

Quantity tolerance
Normally mills take -10% to +10% tolerance, but TPMCSTEEL keeps ±3% variation.

Length tolerance
For Seamless pipe& tube, if definite cut lengths are ordered, the length shall vary within -0mm / +6mm.

Dimension tolerances of seamless steel pipe

Pipe typesPipe Szie(mm)Tolerances
Hot rolledOD<50±0.50mm
≥50±1%
WT<4±12.5%
≥4-20+15%, -12.5%
>20±12.5%
Cold drawnOD6-10±0.20mm
10-30±0.40mm
30-50±0.45
>50±1%
WT<1±0.15mm
>1-3+ 15%, – 10%
>3+ 12.5%, – 10%
StandardHot finished seamless tubeCold flnished seamless tube
Out diameter
(mm)
ToleranceOut diameter
(mm)
Tolerance
EN10216-1≤100 +/-0.75%
(min.+/-0.5mm)
All +/-0.5%
EN10216-2(min. +/-0.30mm)
DIN17175>100 +/-0.90%
GB/T 3087≤460 +/-0.75%
(min.+/-0.5mm)
 10-30  +/-0.40mm
>30-50 +/-0.45mm
>50 +/-1.0%
GB/T 5310
GB/T 9948
GB/T 6479
<57 +/-0.40mm≤30 +/-0.20mm 
 57-325  +/-0.75%>30-50  +/-0.30mm 
>325-460 +1%,-2mm>50 +/-0.8% 
ASME SA-179M
ASME SA-192M
ASME SA-209M
ASME SA-210M
ASME SA-213M
JIS G 3461
JIS G 3461
≤101.6 +0.4, -0.8mm<25.4 +/-0.10mm
>25.4-38.1 +/-0.15mm
>38.1-50.8 +/-0.20mm 
101.6-190.5 +0.4, -1.2mm>50.8-63.5 +/-0.25mm
>63.5-76.2 +/-0.30mm 
>76.2 +/-0.38mm
ASME SA106
ASME SA335
≤48.3 +/-0.40mm ≤48.3 +/-0.40mm
 48.3-114.3 +/-0.79mm 
114.4-219.1 +1.59, -0.79mm 
219.2-323.9 +2.38, -0.79mm>48.3 +/-0.79mm 
>324 +/-1.0%

Tolerances on wall thickness

The wall thickness at any point shall be within the below tolerance table.
StandardHot finished seamless tubeCold flnished seamless tube
DIN17175Out diameter
OD(mm)
Wall thickness
T(mm)
ToleranceOut diameter
(mm)
Wall Thickness
T(mm)
Tolerance
≤130S≤2Sn +15%, -10%   --All +/-10%
(min. +/-0.2mm)
2Sn +12.5%, -10% 
S>4Sn +-/9%
>130S≤0.05da +17.5%, -12.5% 
0.05da +/-12.5% 
S>0.11da +/-10% 
EN 10216-1
EN 10216-2
 ≤219.1  -   +/-12.5%
(min.+/-0.4mm) 
 -- T/D≤0.025 +/-20% 
0.025 +/-15% 
0.05 +/-12.5% 
0.1 +/-10% 
GB/T 3087 -- ≤20 +15%,-12.5%
(min.+0.45, -0.35mm)
 --  1.0-3.0  +15%, -10% 
>20 +/-12.5%  -- >3 +12.5%, -10% 
GB/T 5310
GB/T 9948
GB/T 6479
 -- <4.0 +15%,-10%
(min.+0.48, -0.32mm)
 --  2-3  +12%,-10% 
 4-20  +12.5%,-10% >3 +/-10% 
>20 +/-10%
ASME SA-179M
ASME SA-192M
ASME SA-209M
ASME SA-210M
ASME SA-231M
JIS G 3461
JIS G 3462
 --  2.41-3.8  +35%, -0% ≤38.1 --  +20%,-0% 
 3.8-4.6  +33%,-0% >38.1 -- 22%,-0% 
>4.6 +28%,-0%  --  --  -- 
ASME SA-106
ASME SA-335
 -- All +/12.5% All +/-10% 

Note:

  1. The size in the table above is for the hot-rolled tubes.
  2. The size of the green area is the regular specification, we can accept orders directly, but the yellow area shall be subject to a technical evaluation.
  3. The Out side diameter (O.D) and wall thickness (W.T.) of the tube should be complied.

PMI test

Positive material identification (PMI) testing is the examination of a material, usually a metallic alloy, to confirm the material is consistent with the user’s request.

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

TermSymbolExplanation
Cold-finished/hard (cold-finished as-drawn)BKNo heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked)BKWAfter the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
AnnealedGBKAfter the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
NormalizedNBKThe tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.
The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.


Packing

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

  • Plastic caps plugged at the two sides of pipe ends
  • Should be avoided by the steel strapping and transport damage
  • Bundled signs should be uniform and consistent
  • The same bundle(batch) of steel pipe should be came from the same furnace.
  • The steel pipe has the same furnace number, the same steel grade, the same specifications.

Our packing can meet any needs of the customers.

Inquiry

Need to inquire about our products? Fill out the form below and our staff will be in touch!

Contact Form Demo

FAQ

Q: How long is your delivery time? A: The delivery time of customized products is generally 25 35 days, and non customized products are generally shipped within 24 hours after payment. Q: Do you provide samples? Is it free? A: If the value of the sample is low, we will provide it for free, but the freight needs to be paid by the customer. But for some high value samples, we need to charge a fee. Q: What are your payment terms? A: T/T 30% as the deposit,The balance payment is paid in full before shipment Q: What is the packaging and transportation form? A: Non steaming wooden box and iron frame packaging. Special packaging is available according to customer needs. The transportation is mainly by sea. Q: What is your minimum order quantity? A: There is no minimum order quantity requirement. Customized products are tailor made according to the drawings provided by the customer.